- TensorFlow - 구글 머신러닝 플랫폼
- 1. 텐서 기초 살펴보기
- 2. 간단한 신경망 만들기
- 3. 손실 함수 살펴보기
- 4. 옵티마이저 사용하기
- 5. AND 로직 연산 학습하기
- 6. 뉴런층의 속성 확인하기
- 7. 뉴런층의 출력 확인하기
- 8. MNIST 손글씨 이미지 분류하기
- 9. Fashion MNIST 이미지 분류하기
- 10. 합성곱 신경망 사용하기
- 11. 말과 사람 이미지 분류하기
- 12. 고양이와 개 이미지 분류하기
- 13. 이미지 어그멘테이션의 효과
- 14. 전이 학습 활용하기
- 15. 다중 클래스 분류 문제
- 16. 시냅스 가중치 얻기
- 17. 시냅스 가중치 적용하기
- 18. 모델 시각화하기
- 19. 훈련 과정 시각화하기
- 20. 모델 저장하고 복원하기
- 21. 시계열 데이터 예측하기
- 22. 자연어 처리하기 1
- 23. 자연어 처리하기 2
- 24. 자연어 처리하기 3
- 25. Reference
- tf.cast
- tf.constant_initializer
- tf.constant
- tf.keras.activations.exponential
- tf.keras.activations.linear
- tf.keras.activations.relu
- tf.keras.activations.sigmoid
- tf.keras.activations.softmax
- tf.keras.activations.tanh
- tf.keras.datasets
- tf.keras.layers.Conv2D
- tf.keras.layers.Dense
- tf.keras.layers.Dropout
- tf.keras.layers.Flatten
- tf.keras.layers.GlobalAveragePooling2D
- tf.keras.layers.InputLayer
- tf.keras.layers.Maximum
- tf.keras.layers.Minimum
- tf.keras.layers.ZeroPadding2D
- tf.keras.metrics.Accuracy
- tf.keras.metrics.BinaryAccuracy
- tf.keras.Sequential
- tf.linspace
- tf.ones_initializer
- tf.ones
- tf.random_normal_initializer
- tf.random.normal
- tf.random.set_seed
- tf.random_uniform_initializer
- tf.random.uniform
- tf.range
- tf.rank
- tf.TensorShape
- tf.zeros_initializer
- tf.zeros
- Python Tutorial
- NumPy Tutorial
- Matplotlib Tutorial
- PyQt5 Tutorial
- BeautifulSoup Tutorial
- xlrd/xlwt Tutorial
- Pillow Tutorial
- Googletrans Tutorial
- PyWin32 Tutorial
- PyAutoGUI Tutorial
- Pyperclip Tutorial
- TensorFlow Tutorial
- Tips and Examples
tf.keras.metrics.Accuracy¶
tf.keras.metrics.Accuracy는 예측이 label과 얼마나 일치하는지 계산합니다.
tf.keras.metrics.Accuracy(
name='accuracy', dtype=None
)
예제1¶
import tensorflow as tf
m = tf.keras.metrics.Accuracy()
m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]])
print(m.result().numpy())
0.75
tf.keras.metrics.Accuracy()의 update_state()에 y_true, y_pred을 입력하면,
일치하는 정도를 반환합니다. (3/4 = 0.75)
예제2¶
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.Accuracy()])
신경망 모델을 컴파일하기 위해서 compile() 메서드의 metrics 인자로 지정합니다.